

Public Affairs Council

MANAGE YOUR WORLD

A.I. & Economic Growth

Chad Jones

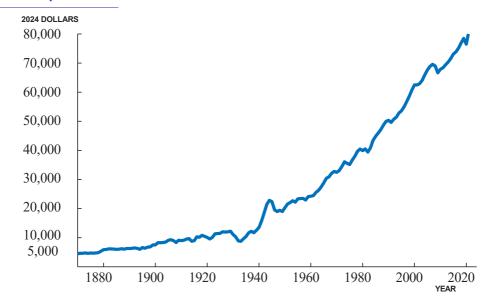
The STANCO 25 Professor of Economics Senior Fellow, Stanford Institute for Economic Policy Research

Artificial Intelligence and Economic Growth

Chad Jones Stanford GSB

Public Affairs Council - October 2025

Outline


- Background: The Theory of Economic Growth
 - How do economists understand the sustained rise in living standards for the past 150+ years?

- · A.I. and Economic Growth
 - What might the next 25 years look like?

The Theory of Economic Growth

U.S. GDP per Person

The Theory of Economic Growth

- Ideas are special (Paul Romer, 2018 Nobel Laureate)
 - Standard goods: laptop computer, hour of a surgeon's time
 - Ideas: design of the Covid vaccine, ChatGPT-5

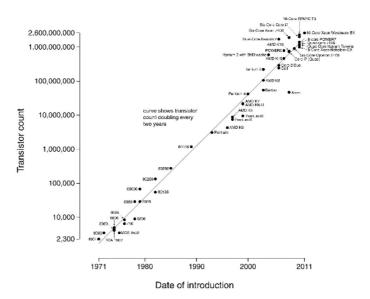
Ideas are infinitely usable: invent once, use many times

Implication for economic growth:

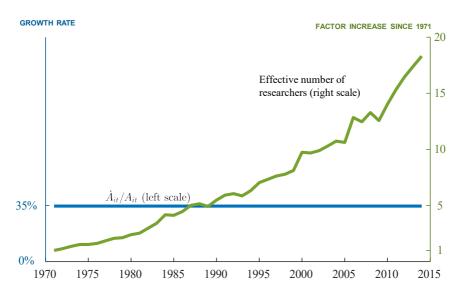
Living standards determined by total number of ideas

Each invention potentially makes everyone better off E.g. semiconductors, the WWW, solar panels

Where do ideas come from? People!


- Researchers, entrepreneurs, and inventors produce ideas
 - Long-run stock of knowledge depends on cumulative number of people who have searched for ideas.

Key Insight:


Income per person ← Ideas ← People

Growth in living standards ← growth in people finding ideas

Moore's Law - Steady exponential growth

Research Effort and Moore's Law

Implications for Growth Theory

Where does long-run growth come from?

Ideas are getting harder to find

We have to invest ever-rising resources in R&D just to maintain a constant rate of economic growth

 Red Queen Theory: we have to run faster and faster to stay in the same place, i.e. to maintain 2% overall growth

Implications for Growth Theory

Where does long-run growth come from?

Ideas are getting harder to find

We have to invest ever-rising resources in R&D just to maintain a constant rate of economic growth

 Red Queen Theory: we have to run faster and faster to stay in the same place, i.e. to maintain 2% overall growth

A.I. could help!

A.I. and Economic Growth

Two insights regarding A.I. (Aghion, B. Jones, and C. Jones, 2019)

- A.I. is the latest form of 200+ years of automation
 - Automation = replace labor in particular tasks with machines and algorithms
 - Past: textile looms, steam engines, electric power, computers
 - Future: driverless cars, paralegals, pathologists, maybe researchers, maybe everyone?
- A.I. may be limited by Baumol's cost disease ⇒ bottlenecks
 - Baumol: growth constrained not by what we do well but rather by what is essential and yet hard to improve

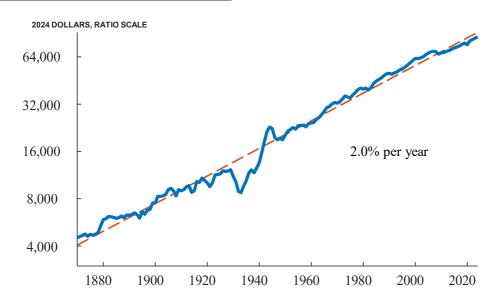
Bottlenecks and Weak Links

- Firm production requires the successful completion of a number of tasks
 - A weak link framework
 - Failing at sourcing inputs or quality control or timely delivery or other tasks can be very detrimental
 - Examples: the O-ring of the space shuttle Challenger, or Amazon's DNS problem last week
- Successful automation allows fast computers or powerful machines to perform tasks instead of people
 - Large cost savings in long run machines get better rapidly
 - Talented people are the scarce input

The bottlenecks are the source of scarcity and hence earn high returns

What would A.I. accelerating economic growth look like?

- Near-term productivity boosts from A.I.
 - Software: 25% productivity improvements already
 - In the next decade(!): A.I. agents that can automate most coding?
 - Virtuous circle: code up even better A.I. algorithms (infinitely usable)

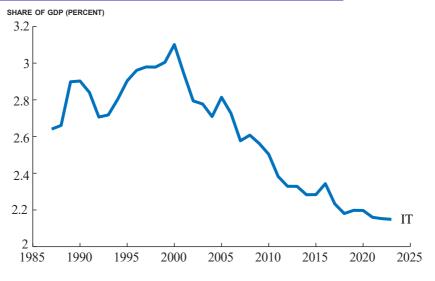

What would A.I. accelerating economic growth look like?

- Near-term productivity boosts from A.I.
 - Software: 25% productivity improvements already
 - In the next decade(!): A.I. agents that can automate most coding?
 - Virtuous circle: code up even better A.I. algorithms (infinitely usable)
- Billions of virtual research assistants, running 100x faster than us
 - Automate most cognitive tasks ⇒ invent new ideas
 - E.g. better chips, robots, medical technologies, etc.
 - A.I. + robots ⇒ automate physical tasks
- Potential to raise growth rates substantially over the next 25 years?

Bottlenecks and Baumol Effects

- Economic history ⇒ may take longer than we expect
 - Electricity and computers changed the economy over 50 years
- Automation has been going on for 150 years with no speed up in growth
 - Electricity, engines, semiconductors, the internet, smartphones
 - Yet growth always 2% per year
- Maybe those great ideas are what *kept* growth from slowing
 - Perhaps A.I. = latest great idea letting us maintain 2% growth for a while longer.
 (pessimistic view, but possible)

Average income per person in the U.S.



The Labor Market, Jobs, and Meaningful Work

- Bottlenecks and jobs
 - Jobs are collections of complementary tasks.
 - Even if A.I. automates a large share of tasks, humans do the remainder
 - "Weak links" ⇒ wages can remain high radiologists! at least for a while
- The world where A.I. "changes everything" is a world where GDP is incredibly high
 - The size of the pie available for redistribution is enormous (transition hard?)
- As we get richer, we naturally work less this is a good thing!
- But there is also good, meaningful work
 - We may choose to value experiences involving people (arts, music, sports)
 - Retirement!

What has happened to the "computer income" share of GDP?

What has happened to the "computer income" share of GDP?

Consistent with bottlenecks and weak links! (Jones and Tonetti)

Catastrophic Risks?

Can we use economic analysis to think about the serious risks?

Two Versions of Existential Risk

- · Bad actors:
 - Could use Claude/GPT-8 to cause harm
 - E.g. design a virus that is more lethal than Ebola and takes 3 months for symptoms
 - Nuclear weapons mangeable because so rare; if every person had them...
- · Alien intelligence:
 - How would we react to a spaceship near Pluto on the way to Earth?
 - "How do we have power over entities more powerful than us, forever?"
 (Stuart Russell)

A Thought Experiment (Jones, 2024 AERI)

- AGI more important than electricity, but more dangerous than nuclear weapons?
- The Oppenheimer Question:
 - If nothing goes wrong, AGI accelerates growth to 10% per year
 - But a one-time small chance that A.I. kills everyone
 - Develop or not? What risk are you willing to take: 1%? 10%?

What does standard economic analysis imply?

Findings:

- Log utility: Willing to take a 33% risk!
 (Maybe entrepreneurs are not very risk averse?)
- More risk averse ($\gamma = 2 \text{ or } 3$), risk cutoff plummets to 2% or less
 - Diminishing returns to consumption
 - We do not need a 4th flat screen TV or a 3rd iphone.
 Need more years of life to enjoy already high living standards.
- But 10% growth ⇒ cure cancer, heart disease
 - \circ Even $\gamma = 3$ willing to take large risks (25%) to cut mortality rates in half
 - Each person dies from cancer or dies from A.I. Just total risk that matters...

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - A.I. risk is at least this large ⇒ spend at least this much?
 - Are we massively underinvesting in mitigating this risk?

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - A.I. risk is at least this large ⇒ spend at least this much?
 - Are we massively underinvesting in mitigating this risk?
- Better intuition
 - VSL = \$10 million
 - ∘ To avoid a mortality risk of 1% \Rightarrow WTP = 1% \times \$10 million = \$100,000
 - This is more than 100% of a year's per capita GDP
 - Xrisk over two decades ⇒ annual investment of 5% of GDP
 - \$100b investment (0.3% gdp)? Yes, even with no value on future generations

- Covid pandemic: "spent" 4% of GDP to mitigate a mortality risk of 0.3%
 - A.I. risk is at least this large ⇒ spend at least this much?
 - Are we massively underinvesting in mitigating this risk?
- Better intuition
 - VSL = \$10 million
 - ∘ To avoid a mortality risk of 1% \Rightarrow WTP = 1% \times \$10 million = \$100,000
 - This is more than 100% of a year's per capita GDP
 - Xrisk over two decades ⇒ annual investment of 5% of GDP
 - \$100b investment (0.3% gdp)? Yes, even with no value on future generations

Incomplete: ignores the "effectiveness" of mitigation but intuition is correct; see paper.

Final Thoughts

Final Thoughts

- How much did the internet change the world between 1990 and 2020?
 - How much will A.I. change things between 2015 and 2045? More or less?
 - I believe the answer is much more
 - Just because changes take 30 years instead of 5 years does not mean that the ultimate effects will not be large
- Are we massively underinvesting in mitigating risks?
 - Easy to justify spending 1/3 of 1% of US GDP = \$100 billion!
 - Exernalities and race dynamics: A.I. labs do not internalize the risks to all of us
 - Should we tax GPUs and use the revenue to subsidize safety?

Talk based on material from several papers

- Growth and ideas
 - Jones (2022) "The Past and Future of Economic Growth..."
 - Bloom et al (2020) "Are Ideas Getting Harder to Find?"
- A.I., growth, and existential risk
 - Aghion, B. Jones, and C. Jones (2019) "Artificial Intelligence and Economic Growth"
 - Jones (2024) "The A.I. Dilemma: Growth versus Existential Risk"
 - Jones (2025) "How much should we spend to reduce A.I.'s existential risk?"
 - Jones and Tonetti (in progress) "Past Automation and the Future of A.I."